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This paper reports the relationships among different covalent bond-order concepts, second-order cumulant
densities, and atomic populations of effectively unpaired electrons. This framework leads to the derivation of
suitable formulas to perform population analyses at correlated level in Mulliken and topological versions.
Numerical determinations in some molecules confirm the usefulness of these proposals for describing chemical
bondings.

1. Introduction

The concept of bond order has played an important role in
the understanding of molecular structures, as well as in studies
of mechanisms of chemical reactions in which the breaking and
formation of chemical bondings is usually described on the basis
of this term. Unfortunately, the quantum theory does not provide
a rigorous definition of this concept because it is not itself an
observable quantity. An early definition of covalent bond order
was reported by Wiberg1 some decades ago on the basis of
results arising from semiempirical wave functions. Since then
a great effort has been dedicated by many authors to establish
an appropriate definition of this concept from ab initio calcula-
tion results.2-13 Two definitions of covalent bond order have
mainly been proposed. One of them is based on the exchange
term derived from the second-order reduced density matrix;2,3

a second definition arises from the fluctuation or covariance of
the electron population of two centers.14-16 Both definitions are
coincident in the closed-shell Hartree-Fock picture but lead to
different results when correlated wave functions are used.10,11,13

The study of the properties of the cumulant of the second-
order reduced density matrix has recently aroused a considerable
interest.17-21 This tool allows one to relate, in an exact way,
the elements of the correlated second-order reduced density
matrix with products of elements of the first-order reduced
density matrix. Similarly, the effectively unpaired electron
density, although proposed some time ago,22,23has more recently
been revealed to be a suitable method to describe the extent of
the radical and diradical character in molecules and transition
states.24,25 The effectively unpaired electron density matrix
represents the spatial distribution of odd electrons in open-shell
molecules, but it also accounts for the partial split of electron
pairs that appear even in closed-shell systems when the
electronic correlation is taken into account.22-26 We have lately
established the connection among the cumulant densities, the
density of the effectively unpaired electrons, and population
analyses.27 On the basis of this connection, the first aim of this

report is the implementation of these tools, cumulant of the
second-order reduced density matrix and density of effectively
unpaired electrons, to describe bond orders. The approach
provides to establish a rigorous relation between both above-
mentioned definitions of bond order. We have carried out this
study as in the Mulliken scheme of population analysis, in which
the electronic charge is partitioned in a Hilbert space spanned
by the basis functions, as in the topological version, in which
the partitioning is performed over the physical space. As a
consequence of our treatment, the usual classification of theN
electrons of a system as core and nonbonding electrons, electron
shared between two nuclei, and free-valence electrons is
obtained in a natural way, providing useful tools for computa-
tional purposes.

The paper is organized as follows. The second section reports
the basic theory, which allows one to establish appropriate
relationships between different population indices. The third
section describes some calculations of population analyses based
on the correlated first-order reduced density matrix. The obtained
results confirm the interest of the proposed equations.

2. Theoretical Treatment

Let us consider a set of orthonormal orbitals{i, j, k, l, ...}
and the corresponding set of spin-orbitals{iR, jR, ..., iâ, jâ, ...}.
The spin-free first-order and second-order reduced density
matrices are defined, respectively, as

where ci
†σ, cjσ, etc. are the usual creation and annihilation

fermion operators andσ andσ′ are the spin coordinates (R or
â). |L 〉 is theN-electron state of the system. Note that the trace
of the matrix2D is (2

N). Hence, according to the values of the
traces of the matrices1D and2D, it is possible to write
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Obviously, if the basis set is nonorthogonal, eq 3 must be
substituted byN ) ∑i,k[(1PS)i

i (1PS)k
k - 2(S2PS)ik

ik], where 1P,
2P, andSare the usual charge density, pair density, and overlap
matrices, respectively. Two treatments can be carried out in eq
3, as is described in the two following subsections.

2.1. Mulliken Treatment. A Mulliken-type partitioning can
be obtained from eq 3 if we write

where

andA, B, etc. stand for different nuclei of the system.
The diatomic terms∆AB constitute a definition ofbond order

between two nucleiA andB, at any level of theory, according
to eq 6. It turns out to be equivalent to the definition of bond
order in terms of covariance (correlation of fluctuations) of the
charge operatorsq̂A andq̂B, that is,∆AB ) -2〈(q̂A - 〈q̂A〉)(q̂B -
〈q̂B〉)〉, where, as is well-known,q̂A ) ∑σ∑i

Aσci
†σciσ and

similarly for q̂B.9

We propose to express, in eq 3, the matrix elements2Dik
ik

through the cumulant of the second-order reduced density
matrix, the matrix elements of which will be denoted as
(Λjl

ik)20,21,27so that

Another tool that we wish to introduce in eq 3 is the effectively
unpaired electron matrix the elements of which are defined
as22,23

As has recently been shown, theu matrix is related with theΛ
matrix through the tensorial contraction27

so eq 3 can finally be written as

The second term of the right-hand side (rhs) in eq 10,∑i ui
i,

represents the number of unpaired electrons of the system;22-27

consequently, the first term,1/2∑i[∑k
1Dk

i 1Di
k - ui

i], must ac-
count for the paired ones.

If we perform a Mulliken-type partitioning in eq 10 into terms
involving one or two centers, we can write

where

and

Because the monatomic termsuA expressed by eq 14 stand for
the effectively unpaired electrons on the nucleusA,25,27the other
monatomic termspA in eq 11 must be related to the effectively
paired electrons on this nucleus. These one-electron matrices
have been obtained from contractions (sums over all of the
functions of the basis set) of two-electron quantities, which
contain Coulomb and exchange correlations.13 Hence, theu and
p matrices also contain information about both types of
correlations in open-shell systems as in closed-shell ones (when
they are described by correlated wave functions). The expression
of the diatomic termsIAB of eq 11 according to eq 13 constitutes
the exchangedefinition of bond order.2,3,11 This definition of
bond order depends on the square of the first-order reduced
density matrix elements, and consequently, it does not distin-
guish between net bonding and net antibonding, as has recently
been pointed out.28-30

Equations 6, 7, and 13 lead to establishment of the rigorous
mathematical relationship between the two definitions of bond
order

In the case of a closed-shell determinant, all of the elements
Λik

ik are zero,20 so both expressions of bond order are identical.
Obviously, neither of these definitions of bond order correspond
to the Huckel concept of bond order although they are related
to the square of this quantity.30

2.2. Topological Treatment.Within this approach, let us
consider, in eq 3, the partitioning of the whole real space
according to the Bader’s atomic regions,ΩA.31 Taking into
account that this partitioning holdsΩ ) ∪A ΩA andΩA ∩ ΩB

) Ø (∀ A, B; A * B), eq 3 can be written in the form

where Sij(ΩA), Skl(ΩB), etc. are the elements of the overlap
matrices calculated over the regionsΩA, ΩB, etc.

In eq 16, the following partitioning can be performed

where
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The expression of∆ΩAΩB in eq 19 constitutes the topological
version of the fluctuation-type definition of bond order between
the regionsΩA andΩB at correlated level.10

The substitution of eqs 7 and 9 in expression 16 leads to

or, alternatively,

where

and

Equations 22, 23, and 24 are the counterparts of eqs 12, 13,
and 14, respectively, in the topological version. Likewise, the
topological fluctuation-type bond order and the topological
exchange-type bond order are related by the expression

In the next section, some calculations in selected molecules are
described to evaluate the usefulness of the partitioning proposed
in eqs 11 and 21.

3. Results and Discussion

Numerical determinations have been carried out to test the
above methodology for localizing paired and unpaired electrons,
as well as for describing chemical bondings using exchange-
type bond order indices at correlated level. All of the calculations
reported in this section were performed using a modified
Gaussian 9432 program, which generated the first-order reduced
density matrices, as well as the overlap integralsSij(ΩA) that
appear in eqs 22-24. In a second step, these matrices were
subjected to population analysis by our own computational
implementation. The employed basis sets have been 6-31G**
with d polarization functions on the heavy atoms and p functions
on the hydrogen ones for the compounds described in Tables 1
and 2. The results reported in Table 3 have been obtained with
the simpler basis set 6-31G. All of the geometries were
optimized for these basis sets within configuration interaction
(CI) wave functions with single and double excitations (SDCI).
The Mulliken-type calculations have been carried out in the
atomic basis sets. Because these basis sets are nonorthogonal,
the matrix elements1Dj

i have systematically been replaced by

(1PS)j
i, where1P andSare the usual charge density and overlap

matrices, respectively.
Although all of the studied systems are closed-shell mol-

ecules, they have nonzero unpaired electron population values.
This is due to the partial split of electron pairs, pointed out in
the Introduction, which arises from the dispersal of the occupa-
tion numbers of the orbitals in the expansion on several Slater
determinants, which occurs when a system is described using
correlated wave functions. The results in Table 1 refer to simple
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TABLE 1: Calculated Values of PopulationspA, pC, uA, and
uC and Bond Orders IAB, and IAC (Mulliken-type) and
Populations pΩA, pΩC, uΩA, and uΩC and Bond Orders I ΩAΩB,
and IΩAΩC (Topological) in Diatomic Molecules in the SDCI
Approximation for A, B ) H, N, O, or F

H2 N2 O2 F2 CO

pA 0.464 5.364 6.800 8.248 6.774
pC 4.400
uA 0.060 0.346 0.377 0.322 0.331
uC 0.303
IAB 0.946 2.569 1.642 0.856
IAC 2.202
pΩA 0.463 5.243 6.601 8.118 8.088
pΩC 3.725
uΩA 0.060 0.346 0.377 0.322 0.398
uΩC 0.237
IΩAΩB 0.955 2.822 2.045 1.119
IΩAΩC 1.552

TABLE 2: Calculated Values of PopulationspA, pH, uA, and
uH and Bond Orders IAH (Mulliken-type) and Populations
pΩA, pΩH, uΩA, and uΩH, and Bond Orders I ΩAΩH (Topological)
for Second-Row Hydrides in the SDCI Approximation for A
) B, C, N, O, or F

BH3 CH4 NH3 H2O HF

pA 3.200 4.319 6.111 7.480 8.691
pH 0.537 0.379 0.269 0.211 0.167
uA 0.189 0.250 0.298 0.302 0.264
uH 0.059 0.052 0.047 0.045 0.041
IAH 0.940 0.932 0.879 0.849 0.831
pΩA 2.111 3.738 6.412 8.172 9.191
pΩH 1.197 0.447 0.172 0.065 0.026
uΩA 0.074 0.219 0.309 0.325 0.281
uΩH 0.097 0.060 0.044 0.033 0.025
IΩAΩH 0.507 0.944 0.860 0.650 0.478
IΩHΩH′ 0.137

TABLE 3: Calculated Values of PopulationspC, pH, pA, uC,
uH, and uA and Bond Orders ICC′, ICH, and ICA
(Mulliken-type) and Populations pΩC, pΩH, pΩA, uΩC, uΩH, and
uΩA and Bond Orders I ΩCΩC′, I ΩCΩH, and I ΩCΩA (topological)
for Several Organic Compounds in the SDCI Approximation
for A ) N or F

C2H6 C2H4 C2H2 HCN CH3F

pC 4.395 4.185 3.995 3.939 4.096
pH 0.372 0.369 0.264 0.255 0.368
pA 5.541 8.818
uC 0.197 0.262 0.309 0.305 0.195
uH 0.040 0.039 0.034 0.035 0.039
uA 0.321 0.211
ICC′ 0.882 1.814 3.057
ICH 0.929 0.926 0.832 0.839 0.908
ICA 2.737 0.740
pΩC 3.830 3.890 4.012 3.363 3.560
pΩH 0.440 0.419 0.319 0.279 0.419
pΩA 6.288 8.836
uΩC 0.177 0.246 0.299 0.263 0.170
uΩH 0.047 0.047 0.044 0.042 0.045
uΩA 0.356 0.219
IΩCΩC′ 0.953 1.782 2.654
IΩCΩH 0.937 0.940 0.934 0.894 0.913
IΩCΩA 2.440 0.821
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diatomic molecules in the ground state (except in the oxygen
case). The first conclusion that can be drawn from these results
is that the monatomic populations of the paired, as well as the
unpaired, electrons are similar in the Mulliken and the topologi-
cal versions for the homonuclear molecules. However, in the
case of the CO molecule, the value ofpΩO ) 8.088 is clearly
higher than its counterpartpO ) 6.774. Hence, the stronger
electronegative character of the oxygen atom is more clearly
pointed out in the topological approach. The values ofuΩC )
0.237 anduC ) 0.303 also agree with this property. This
confirms again the well-known shortcomings of the Mulliken-
type partitionings to describe chemical bondings in polar
molecules.12 The found values of the bond orders are close to
the conventional ones; they are higher in the topological method
than in the Mulliken one, except in the case of the heteronuclear
molecule CO of which the lower valueIΩOΩC ) 1.552 shows
again that the electron pairs are unequally shared, which
provides the previously commented highpΩO value.

Table 2 reports the results corresponding to some hydrides
of the second-row elements. The extent of the polarity of the
A-H bonding is clearly reflected on the values ofIAH andIΩAΩH.
Both topological and Mulliken results show a decreasing of the
sharing of electrons along the sequence A) N, O, F, represented
by the decreasing of theIAH and IΩAΩH values. This is due to
the corresponding increasing of the electronegativity of the
nucleous A, although the topological results describe a lower
sharing than the Mulliken ones. The ionic character of these
bondings is correspondingly reflected on the increasing of the
pA andpΩA populations and the decreasing of the corresponding
pH andpΩH ones. However, the values ofICH ) 0.932 andIΩCΩH

) 0.944 are similar in the nonpolar CH4 molecule. The high
value found for the populationpΩH ) 1.197 in the BH3 molecule
clearly predicts the presence of negative charge on the hydrogen
atoms in this molecule, while the valuepH ) 0.537 in the
Mulliken procedure is considerably lower. The nonnegligible
IΩHΩH′ value has also been pointed out in ref 10 using a
fluctuation-type topological treatment.

Table 3 describes the numerical values obtained in some
organic compounds, which are considered as standard models
of different bond order multiplicities (C2H6, C2H4, C2H2, HCN).
This table also describes the molecule CH3F as an example of
a system posessing an atom with high electronegativity. These
results confirm that this methodology is feasible to characterize
the multiplicity of the C-C and C-N bondings and also yields
reasonable values for the C-H bondings in all cases. The value
pΩF ) 3.560 is lower than its counterpartpF ) 4.096 showing
a higher ionic character of the bonding C-F in the topological
procedure. It is also interesting to point out the increasing of
the uC anduΩC values in the series C2H6, C2H4, C2H2, which
predicts a corresponding increasing of the reactivity of the
carbon atom.26,27

In conclusion, this report has proposed a partitioning of the
N electrons in a molecule according to three terms with clear
physical meaning (eqs 11 and 21). One of these terms,IAB or
IΩAΩB, is identified with the exchange-type bond order and,
together with the proposedpA anduA or pΩA anduΩA monatomic
indices, leads to meaningful results in the description of the
molecules used as test examples. The performed numerical
determinations show a better behavior of the topological version
for describing polar bondings. The reported methodology only
needs the first-order density matrices, which is interesting in a

computational point of view because it avoids the much more
expensive use of higher-order reduced density matrices. Further
studies are currently being carried out in our laboratories with
the cumulants of the second-order reduced density matrixes to
compare fluctuation-type and exchange-type bond orders (see
eqs 15 and 25), as well as their basis dependence, etc. The results
will be published elsewhere.33
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